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Since 2010 Australian ecosystems and managed landscapes have been severely threatened by the invasive fungal patho-

gen Austropuccinia psidii. Detecting and monitoring disease outbreaks is currently only possible by human assessors,

which is slow and labour intensive. Over the last 25 years, spectral vegetation indices (SVIs) have been designed to

assess variation in biochemical or biophysical traits of vegetation. However, diagnosis of individual diseases based on

classical SVIs is currently not possible because they lack disease specificity. Here, a novel spectral disease index (SDI),

the lemon myrtle–myrtle rust index (LMMR), has been developed. The index was designed from hyperspectral leaf-clip

data collected at a lemon myrtle plantation in New South Wales, Australia. A total of 236 fungicide-treated (disease

free) and 228 untreated (diseased) lemon myrtle leaves were sampled and a random forest classifier was used to show

that the LMMR discriminates those classes with an overall accuracy of 90%. Compared to three classical SVIs (PRI,

MCARI, NBNDVI), commonly applied for stress detection, the LMMR clearly improved classification accuracies

(58%, 67%, 60%, respectively). If the LMMR can be validated on independent datasets from similar and different

host species, it could enable land managers to reduce disease impact by earlier control. There might also be potential

to collect useful data for epidemiology models. Calculating the LMMR based on hyperspectral data collected from

aerial platforms (e.g. drones) would allow for rapid and high-capacity screening for disease outbreaks.
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Introduction

Plant pathogens, such as rust fungi, play a versatile
role in ecology and economy. They affect community
dynamics and diversification through coevolution with
their host plants (Helfer, 2014) but also cause extensive
damage to agricultural and forestry crops. This was
recently demonstrated by a new, highly virulent strain
of Puccinia graminis, a rust fungus that destroyed tens
of thousands of hectares of wheat crops in southern
Europe (Bhattacharya, 2017). Here, the focus is on the
rust fungus Austropuccinia psidii (Sphaerophragmi-
aceae, Pucciniales), an obligate biotrophic plant patho-
gen in the highly diverse phylum Basidiomycota
(Beenken, 2017). In Australia, A. psidii is invasive and
causes a disease commonly known as myrtle rust that
exclusively affects one of Australia’s dominant plant
families, the Myrtaceae (Carnegie & Pegg, 2018). In
contrast to other rust diseases, which are mostly
restricted to few host species, myrtle rust infects hun-
dreds of species, escalating the potential consequences
for Australia’s natural landscapes (Carnegie & Pegg,
2018). Australian native species have already been

severely damaged by myrtle rust in the wild (Carnegie
& Pegg, 2018).
Industries that rely on species within the Myrtaceae,

such as the nursery and garden industry, have also been
affected by myrtle rust through losses of commercial
varieties, trade restrictions and increased dependency on
fungicides (Carnegie & Pegg, 2018). In Australia the
expanding lemon myrtle (Backhousia citriodora) indus-
try has been particularly affected, as cultivars of B. citri-
odora currently in use are moderately or highly
susceptible to myrtle rust (Doran et al., 2012). Leaves
of lemon myrtle are commercially harvested to produce
lemon-flavoured herbal teas, culinary herbs and lemon-
scented essential oils used for food flavouring and per-
sonal care products (Clarke, 2012). The farm-gate value
of this market has been estimated to be AU$7–23 mil-
lion annually (Clarke, 2012). Rust-affected leaves of
B. citriodora are unsuitable for use and cause yield
losses up to 70%. The application of fungicides to con-
trol the disease is undesirable because the market
demands a clean, organic product (Carnegie & Pegg,
2018). Therefore, the industries reliant on lemon myrtle
are in urgent need of rust-resistant cultivars or measures
to reduce the use of fungicides.
The detection of myrtle rust symptoms and those of

other pathogens has traditionally relied on visual*E-mail: rene.heim@hdr.mq.edu.au
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assessment. However, visual assessment is somewhat
subjective due to the assessor’s individual experience,
and the visual cues humans use vary through time within
individuals (Bock et al., 2010). Automated methods
using optical remote sensing have the potential to detect
diseases with greater sensitivity, specificity and reliability
than what is possible by humans using visual estimation
(Mahlein, 2016).
Over the last 30 years, the field of ‘precision agricul-

ture’ has adopted optical remote sensing to optimize all
production-related materials such as fertilizers and agro-
chemicals (Mulla, 2013). A subfield in precision agricul-
ture is efficient disease detection and management.
Acquiring disease-related spectral data is information-
intense and often requires a reduction to the most
relevant wavebands to reflect the pathosystem under
investigation (Stafford, 2000). In many cases, the visual
region (VIS, 400–700 nm) has been found most useful
for indicating visible disease symptoms (e.g. discoloura-
tions), while the near-infrared region (NIR, 700–
1300 nm) has indicated changes in structural leaf traits
(Jacquemoud & Ustin, 2001; Mulla, 2013). Parallel to
the progress in precision agriculture, spectral vegetation
indices (SVIs) have been developed to simplify the pre-
diction of biochemical, structural or physiological
changes in plants. For instance, the photochemical reflec-
tance index (PRI) was developed as an indicator for the
efficiency of carbon fixation using photosynthetic radia-
tion (Gamon et al., 1997). Ashourloo et al. (2014) evalu-
ated the effect of wheat rust symptoms on a set of SVIs
(e.g. normalized difference vegetation index (NDVI),
narrow-band normalized difference vegetation index
(NBNDVI) and PRI) and they were found to be effective
when disease severity was high, while being less effective
in discriminating different symptoms. Mahlein et al.
(2013) already stated a year earlier that SVIs would not
be suitable for disease detection as they were originally
designed for other purposes. Therefore, they developed
spectral disease indices (SDIs) that could successfully
discriminate among different sugar beet diseases.
The primary aim of the present study was to develop

an SDI for myrtle rust detection on lemon myrtle
plants (B. citriodora). The analyses were based on data
recorded on a myrtle rust-infested plantation, also used
in a previous study (Heim et al., 2018). In that previ-
ous work it was shown that fungicide-treated and
untreated B. citriodora leaves could be classified with
high accuracy based on a broad set of 202 wavebands
(i.e. predictor variables). In the present study, these
202 wavebands were first refined to provide the mini-
mum number of wavebands required to accurately clas-
sify the two classes (treated/untreated). Next, the SDI
was designed by using the refined wavebands. Finally,
the classification accuracy of the SDI was compared to
that of three SVIs widely used in plant disease detec-
tion. An additional aim was to provide the first coded
framework presented in the R statistical programming
environment (R Core Team, 2017) for developing
SDIs.

Materials and methods

Data collection

Leaf spectral data were collected on a lemon myrtle plantation

in northern New South Wales, Australia (lat �28.6911, long
153.2955). For more information refer to Heim et al. (2018). A
proportion of trees had been treated with fungicide to control

A. psidii, while a proportion was untreated and thus diseased.

Measurements were made on leaves affected by A. psidii (un-
treated leaves; Fig. 1b,c,d) and on leaves that had been treated

with fungicides and therefore showed negligible signs of

A. psidii infection (Fig. 1a). Leaves from untreated trees had

varying levels of disease, including small purple spots through to
large necrotic lesions and yellow pustules. Leaves from treated

trees showed mostly no signs of A. psidii infection, although

some had small purple spots, probably due to infection occur-

ring prior to application of fungicides which have been shown
effective in halting the infection process (Horwood et al., 2013).
The influence of other biotic agents was excluded, as no other

serious pathogen on lemon myrtle was known prior to A. psidii
(Dr Angus Carnegie, Department of Primary Industries, Parra-

matta, Australia and Gary Mazzorana, Australian Rainforest

Products, Lismore, Australia, personal communication). Spectral

reflectance signatures between 350 and 2500 nm were recorded
with a portable non-imaging spectroradiometer (Spectral Evolu-

tion PSR+ 3500) with a spectral resolution of 3 nm steps

between 450 and 700 nm, 8 nm steps between 700 and

1500 nm and 6 nm steps between 1500 and 2100 nm. Measure-
ments were made from the adaxial leaf surface using a leaf clip

holder with a 3-mm sample area, a built-in reflectance standard

and a separate 5 W light source (ILM-105; see Fig. S1 for illu-
mination spectrum). A total of 236 fungicide-treated and 228

untreated lemon myrtle leaf samples were measured, with three

leaves sampled per tree (n = 464). Further details on sampling

design are given by Heim et al. (2018).

Data preparation

The original dataset (Heim et al., 2018) contained 2151 spectral

wavebands (i.e. predictor variables), thus more predictor vari-

ables than observations, a situation referred to as ‘high dimen-

sionality’ (Hastie et al., 2009). High-dimensional data can
contain unknown groups of highly correlated predictors (Genuer

et al., 2015). Correlated predictor variables may lead to inaccu-

rate selection of relevant wavebands. To counter this, spectral
resampling was used. This reduced the original spectral resolu-

tion of 3–8 nm (2151 wavebands) to a resolution of 10 nm

(202 wavebands; Heim et al., 2018). The spectral data used in

this study is no longer high-dimensional (Mahlein et al., 2013)
and still contains 464 spectral reflectance profiles, including 236

fungicide-treated and 228 untreated lemon myrtle leaves.

All analyses were conducted using the R statistical platform

(R Core Team, 2017). The full analysis (Fig. S1) can be
reproduced using code and data archived at https://github.c

om/ReneHeim/RustIndex. The provided code has potential to

serve as a framework to develop SDIs for other host–patho-
gen combinations.

Raw data to linear model

Spectral vegetation indices commonly use two to four wave-

bands, and ratios thereof (Mahlein et al., 2013). Similarly, it
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was decided to reduce the 202 wavebands to four wavebands,

allowing the design of an easily interpretable index in the form
of SVIs like the NBNDVI (Equation 7; Thenkabail et al.,
2000).

To create ratio indices from linear models, as attempted

here, the original reflectance data (band-wavelength 1, B1;
band-wavelength 2, B2) were log-transformed, yielding logged

reflectance values (log(B1), log(B2)). By introducing a log-term

into a linear equation, the following basic algebra rules (Equa-
tions 1 and 2) apply and ratios and products of reflectance

adhere to:

logðB1a � B2bÞ ¼ a � log B1ð Þ þ b � logðB2Þ (1)

logðB1
a

B2b
Þ ¼ a � log B1ð Þ � b � logðB2Þ (2)

Before these rules became relevant, a random-forest-based
feature selection was applied on the original data (Fig. S1a),

repeating it 10 times to account for variability in the selec-

tion process. This resulted in a set of 27 wavebands that

retained predictive power while avoiding redundancy. Here,
the R package VSURF (Genuer et al., 2015) was used, as it is

suitable for regular and high-dimensional data. This was

necessary because the computational effort of a direct

exhaustive model selection, as applied in the following,

would have been too high and time-consuming using 202

predictor variables. This refined set of 12 wavebands was
submitted as a candidate set of predictor variables to an

exhaustive model search using a binominal generalized linear

model. This allowed identification of a linear model contain-

ing the four most relevant wavebands to discriminate the
binary response (treated and untreated). The best model was

indicated by the small-sample-corrected Akaike information

criterion (AICc).
At this stage, an intermediate step had to be included to com-

pute the coefficients for the best model, as wavelength (parame-

ters) were provided without the corresponding numerical

coefficients. By submitting the linear combination of the best
four wavebands (e.g. Response~1 + B545 + B555 + B1505 +
B2195) from the previous step to another binominal generalized

linear model, the required model coefficients were yielded

(Equation 3).

Linear model to classification report

The best four parameters including their coefficients from the

above-described binominal generalized linear model character-

ized the predicted probability, p, that a given leaf was infected
(Equation 3). As mentioned in the beginning, the model (Equa-

tion 3) contains log-transformed reflectance values to make use

of the algebraic rules (Equations 1 and 2):

(a) (b)

(c) (d)

Figure 1 Fungicide-treated (a) and untreated (b, c, d) Backhousia citriodora leaves that have been assessed at a lemon myrtle plantation in New

South Wales, Australia. Fungicide-treated trees were free of active disease but could show stray, necrotic lesions or purple spots, probably due to

infection occurring prior to fungicide application. Leaves that were not treated were largely covered with dark necrotic lesions, purple lesions and

yellow spores (d) because Austropuccinia psidii was not contained (b). Images: Ina Geedicke
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log
p

1� p

� �
¼ 18:39þ 75:38 � logðB545Þ � 78:81 � logðB555Þ

þ 45:99 � logðB1505Þ � 46:83 � logðB2195Þ
(3)

Wavelengths 545 and 555 nm straddle the VIS spectrum;

1505 and 2195 nm are both in the short-wavelength infrared

(SWIR) spectrum. In this model (Equation 3), the coefficients

for log(B545) and log(B555) are of approximately equal magni-
tude and opposite in sign, as are the coefficients for log(B1505)

and log(B2195). This observation also indicates that both pairs

of variables can be treated as ratios for the construction of the
specific disease index and is further supported by overlapping

95% confidence intervals found during the analysis (95% CI

B545 [57.01, 96.09], B555 [99.93, 60.08], B1505 [37.32,

56.03], B2195 [57.07, 38.05]). The magnitudes of the coeffi-
cients for log(B545) and log(B555) are approximately 1.66-times

greater than those for log(B1505) and log(B2195). Thus, to

transpose Eqn 3 into the form of a ratio SDI, giving the lemon

myrtle–myrtle rust index (LMMR; Equation 6), the following
steps were applied (see also Fig. S1):

Summarize coefficients of approximately equal magnitude and

opposite in sign:

log
p

1� p

� �
¼ 18:39þ 76:50 � log B545

B555

� �

þ 46:50 � log B1505

B2195

� � (4)

Drop constant coefficient (18.387 = const.) and transpose fur-
ther ð76:546:5 � 5

3Þ:

log
p

1� p

� �
¼ 5

3
� log B545

B555

� �
þ log

B1505

B2195

� �
(5)

Take exponential of both sides:

p

1� p
¼ B545

B555

� �5
3

�B1505
B2195

¼ LMMR (6)

To assess the performance of the LMMR (Equation 6), its

accuracy to discriminate untreated and treated lemon myrtle
leaves was compared to the accuracy of spectral vegetation

indices commonly applied to detect plant pathogens (Mahlein

et al., 2013; Ashourloo et al., 2014). These indices were
selected according to the biological processes they indicate and

whether these processes could be linked with physiological

changes caused by myrtle rust. For example, urediniospores of

rust fungi contain carotenoids and melanin-like pigments, hence
their brown-orange-yellow colour (Mahlein et al., 2013).

Changes in plant pigments can be detected, amongst others, by

applying either the photochemical reflectance index (PRI; Equa-

tion 7; Gamon et al., 1997) or the modified chlorophyll
absorption in reflectance index (MCARI; Equation 8; Daughtry,

2000). Also, the structural integrity of the mesophyll cells is

reduced when hyphae of A. psidii enter this cell layer (Morin
et al., 2014). Processes that interfere with the cellular integrity,

and therefore cause stress, are usually reflected in the near-

infrared region (Pe~nuelas & Filella, 1998). Therefore, the nar-

row-band normalized difference vegetation index (NBNDVI;
Equation 9, Thenkabail et al., 2000) could mirror this variation

as it measures the ratio between the near-infrared and visual

region.

PRI ¼ B531� B570

B531þ B570
(7)

MCARI ¼ ðB700� B670Þ � 0:2 � ðB700� B550Þð Þ � B700

B670

� �

(8)

NBNDVI ¼ B850� B680

B850þ B680
(9)

Values were calculated for each index from the original reflec-

tance data and yielded a new dataset (n = 464) containing two

response classes (treated and untreated) and four predictor vari-

ables (PRI, MCARI, NBNDVI and LMMR). This data was ran-
domly split (75/25) into a training set (n = 348) and a test set

(n = 116). As the LMMR was developed on the log-scale, it

should only receive log-transformed data when compared to

other indices.
A logistic regression classifier was used to evaluate which

index was the most accurate predictor variable for the classifica-

tion problem. To increase model accuracy, data were resampled

(drawing random samples with replacement) using the ‘0.632+
bootstrap’ method (Efron & Tibshirani, 1997); this approach

estimates prediction error with less variability than cross-valida-

tion (Efron & Tibshirani,1997). The training models of all four
indices were used to predict the probability, using a threshold of

0.5, that a leaf/tree in the test data was either fungicide-treated

or untreated. The test dataset was not seen by the classifier

before and could therefore be used to validate the models. To
evaluate the prediction performance, an error matrix was pro-

duced containing the following metrics: overall accuracy (OA),

producer accuracy (PA) and user accuracy (UA).

By default, the accuracy of the training and testing process
was evaluated using OA as a metric. OA reflects the agreement

between the reference and predicted classes and has the most

direct interpretation. However, it does not provide information
about the origin of an error (Kuhn & Johnson, 2013). Here, PA

and UA can indicate class-specific errors (Congalton & Green,

2009). PA is the number of correctly classified references for a

class divided by the total number of references of that class and,
thus, represents the accuracy of the classification for a specific

class. UA divides the number of correct classifications (predic-

tions) for a class by the total number of classifications (predic-

tions) for that class. A high UA means that spectra within that
class can be reliably classified as belonging to that class. User

accuracy is often termed to be a measure of reliability, which

can be also interpreted as the agreement between repeated mea-
surements within a class.

Results

The four most import spectral wavebands, 545, 555,
1505 and 2195 nm, were selected (Fig. 2e; vertical,
dashed lines) from a dataset originally containing 202
wavebands for each spectral signature. The binominal
generalized linear model containing these wavebands as
parameters was more successful in predicting whether a
lemon myrtle tree was treated with fungicides or
untreated than models containing other wavebands
between 500 and 2500 nm. While the wavebands at 545
and 555 nm are situated in the visual region (VIS 400–
700 nm) of the electromagnetic spectrum, the wavebands
at 1505 and 2195 nm can be found in the short-wave
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infrared region (SWIR 1300–2500 nm). Based on these
wavebands, a new disease-specific spectral index, the
LMMR was derived (Equation 6).

LMMR classification performance

The training process of the classifier was assessed graphi-
cally (Fig. 2a–d). The PRI and the MCARI (Fig. 2a,b)
could discriminate between treated (red circles) and
untreated (blue triangles) lemon myrtle trees only mar-
ginally (OA: PRI = 66.7%, MCARI = 66.3%). The
NBNDVI (Fig. 2c) does not improve disease detection
over random guessing (OA: NBNDVI = 52.9%). By con-
trast, the LMMR (Fig. 2d) could clearly discriminate
treated and untreated trees in the training process (OA:
LMMR = 86.5%).
Twenty-five percent of the data was isolated before

running the training procedure so as to validate the clas-
sifier on data not yet seen by the classifier. For the vali-
dation, LMMR substantially outperformed other indices
in predicting the disease. The LMMR classified untreated
and treated trees with an overall accuracy of 90%
(Table 1a–d, lower right cells). Other indices ranged
from OA 58% to 67%. Evaluating producer accuracies
(PA) and user accuracies (UA) yielded the same overall
trend. The MCARI had similar UA (treated = 68%,
untreated = 66%) and PA (treated = 66%, untreated =
68%). Also, the UA for both indices (Table 1a,c), the
PRI (treated = 58%, untreated = 58%) and the NBNDVI
(treated = 59%, untreated = 63%) are balanced. For the
PA, the probability that a certain class found on the

plantation is classified as such, it seems that treated trees
can be detected slightly better (PRI, treated = 63%,
untreated = 53%; NBNDVI, treated = 75%, untreated =
46%). Overall, the LMMR delivers high user accuracies
(treated = 89%, untreated = 91%) and high producer
accuracies (PA) for both classes (treated = 92%,
untreated = 88%).

Discussion

This study derived a new potential spectral disease index
(SDI) that allowed detection of symptoms caused by the
invasive fungal pathogen A. psidii on lemon myrtle trees
(B. citriodora). The LMMR (lemon myrtle–myrtle rust)
index discriminated between fungicide-treated and
untreated lemon myrtle plants with notably higher accu-
racy (90%) than classical spectral vegetation indices
(SVIs; 58–67%).
The increased classification accuracy was achieved by

selecting the four most relevant wavebands from initially
202 wavebands. They are specific to this pathosystem
and were able to perform better than indices developed
for other situations. The aim was to drop as many wave-
bands as possible while sustaining substantial prediction
accuracies, and was guided by the common principle to
use three-band indices at the leaf-scale and four band
indices at canopy-scale (Thenkabail et al., 2000).
The waveband selection process resulted in two wave-

bands (545 and 555 nm) with high predictive power for
myrtle rust disease in the VIS region of the electromag-
netic spectrum, and two wavebands (1505 and 2195 nm)
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Figure 2 The potential of the applied classifier to discriminate treated (red circle) and untreated (blue triangle) lemon myrtle leaves (Backhousia

citriodora) after the training process. Plot (e) shows a classical subdivision of the electromagnetic spectrum (VIS, NIR, SWIR) and the locations of

the four most important wavebands to successfully discriminate the spectral signatures.
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in the SWIR region. Variation in reflectance in the VIS
region between treated and untreated leaves is mainly
caused by changing contents of leaf pigments, while
reflectance variation in the SWIR region is often influ-
enced by the composition of leaf chemicals and water
content (Jacquemoud & Ustin, 2001).
This study found variation in spectral reflectance

around 550 nm, and it is known that between 510 and
550 nm spectral variation is closely related to the total
carotenoid pigment content of leaves (Gitelson et al.,
2002). Carotenoids are presumably the pigments giving
the yellow colour to urediniospores of some rusts (Wang
et al., 2018). On B. citriodora, yellow pigmented pus-
tules were found on the adaxial (Fig. 3a–c) and abaxial
(Fig. 3d–f) leaf surfaces of infected leaves. It is likely that
the same pigments also occur within the leaves, as during
the infection and penetration process of A. psidii, the
orange-yellow pigmented contents are transferred into
the leaf by the infection hyphae (Hunt, 1968). There are
no studies describing the exact biochemical composition
of A. psidii pigments (Dr Robert Park, Park Plant Breed-
ing Institute, The University of Sydney, Australia, per-
sonal communication).
Red discolourations were also observed around lesions

caused by A. psidii (Fig. 3a–f). Anthocyanins are the
basis for most orange, pink, red, magenta, purple, blue
and blue-black colours in plants (Davies, 2004) and
might be responsible for the red colouration around
lesions, as they are often found at later stages of an
infection (Glen et al., 2007). Anthocyanins are water-
soluble vacuolar pigments of higher plants that are abun-
dant in juvenile and senescing plants and are represented
by a spectral reflectance peak around 550 nm (Gitelson
et al., 2007). Thus, anthocyanins might be responsible
for the observed spectral shift around 550 nm.
Red discolourations were observed on young leaves

(Fig. 3h, i) of B. citriodora plants, and this might be

regarded as a confounding factor. However, red young
leaves were present on treated as well as on untreated
plants. As the spectral feature linked to anthocyanin con-
tent was still selected, it should represent a difference in
pigment content. Both carotenoids and anthocyanins
absorb light between 500 and 550 nm (Ustin et al.,
2009). Nearby wavebands are usually highly correlated,
and these have been selected, although methods were
applied that were designed to avoid choosing correlated
bands. Overlapping signals often result in inconsistencies
in separating and quantifying different pigments (Ustin
et al., 2009). However, as the wavebands at 545 and
555 nm were chosen consistently in the present study,
this may indicate that carotenoids as well as antho-
cyanins are both independently important for indicating
the presence of A. psidii urediniospores.
For the two important wavebands at 1505 and

2195 nm found in this study, it is assumed that these
might be caused by lack of water, caused by necrotic
lesions occurring on leaves during A. psidii infection
(Glen et al., 2007). Within the SWIR region (1300–
2500 nm), light is primarily absorbed by water in a fresh
leaf, but also by dry matter. Therefore, this region is
linked to changes in water content (Pe~nuelas & Filella,
1998). It has been shown that water loss in leaves can be
caused by the destruction of the leaf cuticle (Lindenthal
et al., 2005) that, in this case, was damaged by many
necrotic lesions on untreated leaves. Leaves from fungi-
cide-treated trees did have some evidence of A. psidii
infection (purple spots), probably due to infection occur-
ring prior to fungicide application. However, the fungi-
cides used (e.g. triadimenol and azoxystrobin) have been
shown to work effectively as eradicants (i.e. kill the rust)
(Horwood et al., 2013) such that these purple spots did
not develop further into yellow pustules and necrotic
spots as they did on untreated trees. Furthermore, prior
to myrtle rust, there were no other significant biotic

Table 1 Accuracy assessment for the logistic regression classification using validation data (116 observations) that was isolated before the classifier

was trained.

(a) PRI

Reference

UA (%) (b) MCARI

Reference

UA (%)TR UN Total TR UN Total

Pred TR 37 27 64 58 Pred TR 39 18 57 68

UN 22 30 52 58 UN 20 39 59 66

Total 59 57 116 Total 59 57 116

PA (%) 63 53 58 PA (%) 66 68 67

(c) NBNDVI

Reference

UA (%) (d) LMMR

Reference

UA (%)TR UN Total TR UN Total

Pred TR 44 31 75 59 Pred TR 54 7 61 89

UN 15 26 41 63 UN 5 50 55 91

Total 59 57 116 Total 59 57 116

PA (%) 75 46 60 PA (%) 92 88 90

Classification was performed using the index values derived by applying the indices PRI (a), MCARI (b), NBNDVI (c) and LMMR (d) on spectral

reflectance data from fungicide-treated (TR) and untreated (UN) lemon myrtle trees. Accuracy can be evaluated comparing the overall accuracy in

every lower right corner of each table and user accuracies (UA) and producer accuracies (PA). The error matrix also shows class totals for the refer-

ence columns and prediction rows. The number of correctly classified trees is highlighted in each grey-shaded cell.
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agents that caused damage to lemon myrtle trees at the
experimental site (Gary Mazzorana, Australian Rain-
forest Products, personal communication). Of course, it
needs further testing whether the LMMR index can
specifically detect myrtle rust against other stress-causing
agents. However, differentiation among diseases using
optical sensors has already been proven feasible for sugar
beet pathogens (Mahlein et al., 2013).
In conclusion, this study presents a newly developed

spectral disease index (SDI) that performs better (90%
OA) than common spectral vegetation indices (SVIs, 58–
67% OA). By publishing the code of this analysis, a frame-
work is provided to generate new SDIs for other pathosys-
tems. While further testing and validation for the LMMR
is required, the concept of specific disease indices is a
promising tool in plant disease detection (Mahlein et al.,
2013). This study was conducted in a plantation setting
where leaves on untreated trees had varying levels of sever-
ity of A. psidii, from small purple spots through to necro-
tic lesions. Thus, the LMMR index is specific to
physiological and phenotypic changes caused by A. psidii.
Confounding stress-causing agents could be excluded dur-
ing the study, as effective fungicides were applied and no
stress-causing agent prior to A. psidii was known at this
site. Future research could focus on the development of

specific disease indices for certain infection stages (e.g.
early). Additionally, it would be interesting to test the
LMMR index on infected lemon myrtle plants at different
locations and against other abiotic and biotic stress-caus-
ing agents. Moreover, it should be tested if the index cor-
relates with disease severity. Similar goals for the
development of specific disease indices have already been
postulated (Mahlein, 2016). For the lemon myrtle indus-
try, which seeks to meet organic standards to be able to
compete economically (Doran et al., 2012), a validated
LMMR could enable land managers to assess highly
infected areas of their arable land and make decisions on
fungicide applications.
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Figure S1. Workflow summarizing each step from original raw data to

the final classification report. (a) This section produces the linear, parsi-

monious model including the four most relevant wavebands and their

coefficients. (b) This section takes the parsimonious model from (a)

which is transformed and simplified to yield the new spectral index speci-

fic to the pathosystem lemon myrtle–myrtle rust (LMMR). The perfor-

mance of the LMMR, to discriminate treated and untreated lemon

myrtle trees, is compared against common spectral vegetation indices

PRI, MCARI and NBNDVI.
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